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Results of direct numerical simulations (DNS) for the decay of an initially Gaussian 
field of turbulence convecting a passive scalar are compared with equivalent results for 
the direct-interaction approximation (DIA) and the test-field model (TFM). The 
Taylor microscale Reynolds number R, and the equivalent PBclet number PA of the 
comparison ranged from 20-8 and 10-4, respectively. The Prandtl number Pr equals 
0.5. Our results show a satisfactory agreement of both theories and numerical simu- 
lations, with the DIA giving better overall agreement, especially a t  small scales. This 
improved small-scale agreement - which appears to hold up to R, N 30 - is related to 
the relatively long coherence times of the small scales, and to the fact that the TFM, 
containing as it does a built-in compliance to the fluctuation dissipation theorem, 
cannot properly cope with this fact. We also give a comparison of results for the 
velocity skewness with the experiments of Tavoularis, Bennett & Corrsin (1978). 

1. Introduction 
Two-point closures such as the test-field model (TFM) (Kraichnan 1971; Newman 

& Herring 1979) and the related eddy-damped quasinormal approximation (Orszag 
1974; Lesieur & Schertzer 1978) appear to explain many of the qualitative charac- 
teristics of the experimental data for spectra, decay rates and skewnesses (Larcheveque 
et al. 1980), although detailed comparisons with experiment are only moderately 
successful. (See the comparison of TFM with the wind-tunnel data of Yeh & Van Atta 
(1973), reported by Newman & Herring (1979).) This apparent overall success seems 
in conflict with certain experimental observations; strong intermittency is known to 
contradict the near-Gaussianity of the multivariate distribution function needed to 
justify such moment closures (Kraichnan 1968; Frisch & Morff 1981). 

The comparison of direct numerical simulations (DNS) with the direct-interaction 
approximation (DIA) and the test-field model (TFM) presented here is an attempt to 
discover just how much the effects of scalar intermittency upset the applicability of 
two-point closures, and in what spectral regions. The present study is limited to 
R, < 30, with an even more severe limitation on PA ( <  15). These limitations are 
dictated by machine limitations (within Cray IA memory). The numerical code 
consists of an extension of the Superbox code of Orszag & Patterson (1972 a)  to include 
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a scalar field. It should be noted that experimentally the scalar intermittency does not 
disappear at low Rk (Freymuth 1978) or the present DNS (Kerr 1981). 

Section 2 presents a brief review of the closure equations (DIA-TFM), together 
with a sketch of the numerical methods for the DNS. Both of these topics have been 
covered in some detail elsewhere (see e.g. Newman & Herring 1979; Larcheveque et al. 
1980, for DIA-TFM; Kerr 198 1, for DNS). For this reason, our discussion is limited to 
only those points needed for later discussions. 

We should note a t  this point that both DIA and TFM must be regarded logically as 
spectral (or two-point) models of turbulence rather than rational approximations to 
the statistical aspects of the flow and scalar fields. This statement holds despite the 
fact that both these procedures were originally proposed in the context of (renormal- 
ized) perturbation theories, with Gaussian noise somehow as the zeroth-order state. 
The convergence of such perturbation approaches at large Reynolds numbers is in 
serious doubt (see e.g. the discussion by Kraichnan 1971). Nonetheless they still 
embody many of the statistical aspects expected of real turbulence in a way which 
allows easy numerical (and especially analytic) computation, Included in the list of 
physically expected properties are the equipartitioning of variance among all available 
degrees of freedom, an eddy-viscous (or conductive) effect of small scales on large 
scales, and - for the TFM - a fidelity to the experimental inertial-range spectra. With 
regard to the last point, the DIA is known to yield a k-g inertial range instead of the 
proper I%-* range. As we shall see, however, a t  low Reynolds numbers, it probably has 
more verisimilitude than TFM. This is because of its more realistic tieatment (accom- 
panied by the need for more numerical computation) of two-time or lagged-covariance 
aspects of the flow. 

An important issue in connection with the use of statistical models of this sort is 
the question of computation time for DNS as compared to the statistical models, DIA 
or TFM. Even if the closures are accurate, their practical importance would be severely 
diminished if their numerical integration required more computer time than the DNS. 
Let us state a t  the onset of our discussion of the point the computer time t c  for the 
present calculations: DNS, t c  = 100s; DIA, t c  = 30s; TFM, t c  = 0.5s. All calculations 
were performed on the NCAR Cray I computer, and the corresponding programs 
vectorized insofar as permitted by FORTRAN. (The DNS contains a CAL FFT as an 
essential component.) For the DNS, five runs were required to secure good statistics. 
However, the above data is not a good guide for estimating the relative utility of these 
methods. The point is that the statistical theories may easily be extended to much 
higher Reynolds numbers by analytically using spectral smoothness with only a modest 
increase of their tc  values, while the DNS (323) cannot be extended beyond RA 2: 40 
without significant high-wavenumber truncation errors. On the other hand, the 
DIA tc  increases as tkaX, where t,,, is the duration of integration. Thus a straight- 
forward timestepping of the DIA quickly becomes prohibitive. Again, temporal 
smoothness of the two-time spectral functions may be used to increase the numerical 
efficiency. 

Section 3 presents a comparison of theory and simulations, with some special focus 
on the behaviour of the small scales (dissipation range). In  this region, we find a better 
agreement between DIA and DNS than TFM and DNS. The reason for this appears 
to be related to the relatively long coherence times of the small scales; a two-time 
closure appears needed to describe these effects. The TFM genre closure (single time) 
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appears inadequate regardless of the values of the adjustable parameters (9, and go). 
Finally, 0 4 compares the present theoretical numerical results (DIA, TFM and 

DNS) with the low-R, experiments of Tavoularis et al. (1978). Here, DNS results for 
the course of ((au/a~)~))f((au/ax)~)~ as a function of R, as well as that for DIA appear 
to be in good agreement with experiment down to R, 2: 1. This is not true for the TFM, 
for reasons noted above. 

2. Equations of motion and theoretical concepts 

satisfying 
We consider a homogeneous field of turbulence u(x, t )  together with a scalar B(x, t )  

a,u = - vp - (u . V)u + VV%, (1) 

ate = - ( ~ . V ) O + K V ~ B ,  (2) 

v . u  = 0. (3) 

Here, v and K are the kinematic viscosity and thermal diffusivity. Let (u, 0) have a t  
t = 0 multivariate homogeneous Gaussian statistics, and further suppose that 
(u(x, 0)s (x’, 0)) = 0 for all (x, x’). The problem considered here is then to determine 
thesubsequent statistical moments, (u(x, t )  u(x’, t’)), (u(x, t )  0(x‘, t’)), (0(x, t )  0(x’, t‘)), 
. . ., for all (x, t )  and (x’, t’), ( t ,  t ’ )  > 0. The DIA furnishes a partial (approximation) 
answer to this question by prescribing full second-moment equations of motion. 
Denoting 

U ( k ,  t ,  t’) = (ui(k, t )  ui( - k, t‘)), 

O ( k ,  t ,  t’) = (0(k, t )0 (  - k, t’)), 
where 

(u(x), W )  = Z e x p  (ik.4 (W), W)). 
k 

The DIA yields (see for example Kraichnan 1959; Newman & Herring 1979) 

-1; dsTp(k, t ,  8 )  U ( k ,  8, t’) - V k 2  U ( k ,  t ,  t‘), (4) 
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The coefficients B U . e ( k , p ,  q )  are 
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BU(k, P ,  q)  = p2q(xy  4- z3)  n, 

BB(k  P ,  a )  = kpq(1 -  Y2) n, 

(2, Y, 4 = ( ( P 2  + q2 - k2) /2pq ,  (k2  + q2 - p 2 ) / 2 k q ,  (k2  + P2 - Q ) / 2 k P ) .  

I n  recording these equations, we have assumed isotropy, and that the heat-flux 
spectrum is identically zero. I n  addition, the integral over d p d q  is over all ( p ,  q )  that  
can form a triangle. 

For v = K = 0, these equations satisfy an important thermal-equilibrium con- 
straint; the fluctuation dissipation theorem (Kraichnan 1958) : 

I U ( k ,  t ,  t ’ )  = G ( k ,  t ,  t ’ )  U ( k ,  t ’ ,  t ’ ) ,  
U(k ,  t ,  t ‘ )  = const. ( 9 )  

The DIA is defective (Kraichnan 1965) in that it does not distinguish properly between 
large-scale convection and straining. This leads to a spurious k- i  inertial range instead 
of the correct k-9. However, a t  modemte R,, (i.e. in a wind tunnel), comparisons with 
both numerical simulations and experimental data indicate that the consequences of 
this error are not significant (Herring & Kraichnan 1972). Subsequent to its original 
introduction, Kraichnan (1965, 197 1 )  proposed methods of avoiding this dilemma, 
the most consistent of which is the Lagrangian-history direct-interaction approxi- 
mation. This procedure deals with equations similar in complexity to (4) and ( 5 ) ,  
except that (t, t ‘ )  are replaced by ‘Lagrangian times’, which in some sense track the 
motion of fluid parcels. This procedure, and particularly its later manifestations (see 
Kraichnan & Herring 1978; Herring & Kraichnan 1979)) has proved to be a fairly 
accurate tool for describing the statistical dynamics of turbulent flows. It is, however, 
rather unwieldy; in fact, even the DIA is somewhat inconveniently complicated as a 
computational tool. 

A computationally more convenient method is the TFM (Kraichnan 1971)) which 
requires only one time argument; its basic dynamical ingredient is U ( k ,  t ,  t ) .  This 
procedure properly yields k-8 a t  large R,,; and, in particular, recent comparisons with 
experiments a t  large R,, show it  to be fairly accurate for both U and 0 (Larcheveque 
et al. 1980). The TFM utilizes ( 9 )  (unjustifiably extended out of thermal equilibrium) 
to eliminate two-time arguments from consideration, and then prescribes a properly 
Galilean-invariant equation to replace ( 7 ) .  These replacements, although structurally 
similar to  (71, differ in that the coefficients B u ( k , p ,  q )  and the time-history integrals 
are altered so as to yield a properly Galilean equation for g(k, t ,  t ’ )  (i.e. one insensitive 
to large-scale translation). The time-historical modifications involve a ‘ Markovian- 
ization ’, which is necessary if purely Eulerian invariant description is to be retained. 
The resulting set of TFM equations for U ( k ,  t ,  t )  and @(k, t ,  t )  axe 

a, U ( k >  t ,  t ,  = JA ‘p dq BU(k>pJ 4 )  D1ll(k, p )  4 )  LU(p, t> t ,  - t ,  t ) ]  u(q, t ,  t ,  

- 2vk2 U(k ,  t ,  t ) ,  (10) 

- 2 ~ k ~  @(k, t ,  t ) ,  (11) 
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The G here satisfy 

(a,+Vk')G'(k,t,S) = -$(k)G'(k,t,8), ( a t + R k 2 )  Ge(k,t,s,) = -gz?js(k) G'(k, t ,s) ,  

$(k) = 2i-1 9: dpdpC(k,p,  p) D{s3-'J ( k ,p ,  4 )  U(p, t ,  t ) .  (12) s 
Note that (lo)-( 12) contain no historical integrals, since they have been eliminated by 
the 'Markovian' assumption. We refer to Newman & Herring (1979) and/or Larche- 
veque et al. (1980) for a more complete description. We note that, if the right-hand side 
of (12) is set to zero, we recover the Markovian quasinormal approximation, recently 
revived by Tatsumi, Kida & Mizushima (1978). The 7 here contain 'rescaling' 
factors g,,g, that must be fixed through a comparison with either a more secure 
theory or experiment. The choice (g,, 9,) = (1.17,0.50) appears in good agreement 
with large R, and PA data (see e.g. Larcheveque et al. 1980). 

The TFM for U ( k )  has been compared to numerical simulations of Orszag & 
Patterson (1972) (Herring & Kraichnan 1972) and both U ( k )  and O ( k )  have been 
compared to planetary-boundary-layer data by Larcheveque et al. ( 1980). However, 
comparison of O ( k )  to DNS results for either DIA or TFM has not been reported. We 
view the last step as important in establishing the fidelity of any closure, particularly 
for the scalar problem, for which the importance of intermittency is experimentally 
indicated, and also in view of the rather ambiguous results obtained earlier for wind- 
tunnel experiments (Newman & Herring 1979). 

TheDNS is based on the Superbox code introduced by Orszag &Patterson (1972 a, b ) ,  
and subsequently modified for the Cray IA by Siggia (1981). In  Superbox the velocity 
is de-aliased by truncating interactions outside a sphere and using two shifted grids 
to calculate transfer rates. Our code continues to truncate interactions outside a sphere, 
but uses only one grid. This means that the velocity field is treated pseudospectrally 
or aliased. On the other hand, the scalar field is de-aliased in the following manner: 
compute the scalar transfer in both the conservative and nonconservative form, and 
advance the scalar using the average of the two. The details of this method are discussed 
by Kerr (1981). All the computations are on a 32-cubed grid, with wavenumber range 
1 < +k < 16. This code operates in memory on the CRAY IA. The code is currently 
being modified to perform 64-cubed calculations out of memory. 

3. Comparison of DNS, TFM and DIA 
We consider first the following initial spectrum for E,(k) = 2nk2U(k,0) and 

E,(k) = 27rk20(k)  (run 1): 

E,(k) = A,k4exp ( -  B,k2), 

E,(k) = A,k4exp(-Bok2), 
where 

A ,  = GdBt, A ,  = 12~3B;, B,  = B, = 0.022097 1. 
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FIGURE 1. Comparison of velocity and mixed scalar skewness (see (15) and (16)) (R,, gi) for 
DNS, ‘L‘FM, and DIA. Initial conditions are given by (13) and (14). 

I I I 1 I 

\. 
\. 

I I I I I  
0.2 0.4 0.6 0.8 1 .o 2 

FIGURE 2. Course of RA and PA for run 1 ((13) and (14) give initial conditions 
for E,(k)  and Eo(k)) .  

We should note here that our choice of initial data (13), (14) is made as a convenient 
set for a numerical comparison of theory and simulation. In  particular (14) behaves 
differently as k -+ 0 than that proposed by Corrsin (1951) on the basis of Loitsiansky- 
like considerations for the scalar field. Both (13) and (14) appear to preserve their 
k+ 0 form as the spectra evolve according to all three methods investigated and are 
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consistent with the proposal of Lesieur & Schertzer (1978). As noted earlier, the 
computational wavenumber domain is (2,321. The values of Y and K are 0.01 and 0.02 
respectively (Pr = 0.5). With these values of v, K ,  B, and B, (see (13), (14)), RA(t = 0) 
= 12.0, while PA = 6.0. This rather small value for PA was found necessary in order 
to avoid significant truncation errors for E,(k) near k = 32. For the velocity field, the 
truncation errors are not as severe, indicating a larger transfer for the scalar field than 
for the velocity. Convenient non-dimensional measures of the magnitude of energy and 
scalar-variance transfer to large wavenumber are the derivative skewnesses. There are 
three experimentally measurable skewnesses, two of which are related to the transfer. 
The velocity skewness is 

27, = ((au/ax)3) ((au/ax)z)-$ = - j k 2  T,(k)dk (&,/15~)-8. 
35 

For the scalar transfer the equivalent measure is the mixed skewness 

The third measurable skewness, the scalar skewness ((aB/axj3), is zero in isotropic 
calculations such as ours. T, and To, the energy and variance transfer functions, are 
defined by ($r,&,) = (TD7 T,) - 2(v, K )  k2(E,, Eo). Figure 1 compares the course of 
(St,, 8,) for (0 < t < 1.2). The rise of S from its initial zero Gaussian value to its 
saturated value (8 21 0*4), after which self-similarity of the small scales sets in, is 
clearly seen. The values shown here do not differ much from those reported a t  much 
larger RA and PA7 which suggests a rough Rh independence of the dissipation ranges. 

Figure 2 compares the course of Rh(t) and PA(t) during the time span covered. A 
certain amount of the initial rapid decline of RA and PA is accounted for by the surge of 
energy and scalar variance to small scale during the build-up phase for S, and S,. 
We note that, a t  t = 1, both RA and PA 5 10, yet S, and S, remain rather close to their 
large (RA, PA) saturated values. 

Figures 3(a, b)  compare the course of energy spectra E,(k) and E,(k) for DIA and 
TFM to DNS. For a given initial spectrum it was necessary to make several DNS runs 
with different initial random kernels in order to get stable satistics. The DNS points 
here represent an ensemble of five runs. Ensembles of this size were found necessary in 
order to reduce the scatter of the DNS scalar E,(k) to an acceptable level ( 1  % error). 
At large k, the DIA appears to be the superior method. The TFM cannot be improved 
significantly by decreasing g,, g, (as would be needed to increase E,, Ee). The values of 
RA, PA are so small that the TFM differs little from the Markovian quasinormal theory 
(for which g, = g, = 0) for the present run. We believe that TFM discrepancy is a 
result of Markovianization, which should decrease the energy transfer to large k. This 
may be seen by considering the DIA and its corresponding Markovianized version 
(the generalized Edward’s theory discussed by Herring & Kraichnan (1972)). The 
computed value of S, for the latter during free decay appears to be about 30 yo smaller 
than the former. 

The enhanced DIA energy transfer (relative to TFM) follows from its fidelity to the 
possible existence of near-laminar flow (long Eulerian correlation times) and to the 
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FIGURE 3 (a). For caption see opposite page. 

fact that such flows have a more efficient transfer. This aspect of the DIA was first 
noted by Kraichnan (1964), and observed in the numerical DIA treatment of thermal 
large-Prandtl-number convection (Herring 1969). Later it was used by Herring (1977) 
in treating turbulence interacting with a random topography. It may be demonstrated 
directly from (4)-(7) that these equations are consistent with a static U(k,  t ,  t ’ )  (i.e. an 
independence with respect to t - t ’ ) ,  provided a consistent forcing function is added to 
make (4), (5) stationary. It is of interest in this connection to examine the DIA’s 
two-time structure to see in what respect the lagged autocovariance exceeds the 
expectation of the fluctuation dissipation theorem (9). To do this we compare 

and 

R*(k, t ,  t ’ )  = U ( k ,  t ,  t ’ ) / U ( k ,  t’, t ’ )  

R*(k,  t ,  t ’ )  = O(k ,  t ,  t ’ ) / @ ( k ,  t ’ ,  t ’ )  

to Gu(k, t ,  t ‘ )  and G*(k, t ,  t‘)  for k = 4.9 and k = 20.3 in figures 4 (n, b ) .  The comparison 
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FIGURE 3. Comparison of energy spectra E,(k) ,  E,(k) during the course of run 1. (a) compares 
DNS to DIA and TFM for E,; (a) compares DNS t o  DIA and T F M  for Ee(k). comparisons are 
made for t = 0, 0.2, 0.4, 0-8 and 1-2. Initial E, and E, are (13) and (la), Pr = 0.5. Ordinate 
scale is logarithmic but arbitrary, with each succeeding spectrum displaced upward by two 
orders of magnitude. 

is presented for t' = 2, so that the abscissa is 2 - t .  The two values of k were chosen to 
be near the energy peak and in the far-dissipation range, where nonlinearities are in 
equilibrium with molecular dissipation. To relate these values of k to the dynamics of 
energy transfer, we refer to figure 4(c), which gives T,,,(k) for t = 2. We note from 
figures 4(a, b )  that R* 21 Gu (8* 2: Go) in the energy-containing range, while R* (R*) 
substantially exceeds Gu (as) in the far-dissipation range. This last region is precisely 
where the TFM most significantly underestimates T,,,(k) through its use of (9) to 
eliminate two-time Us from consideration. 

Figures 5 (a)-7 ( b )  (for run 2) are identical to figures 1 (a)-3 (b )  (run l) ,  with the sole 
difference that A ,  and A ,  are increased to 

A, = 304Bt, A ,  = 6OiBi. (1% (19) 
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FIGURE 4. Comparison of DIA G(k ,  t ,  t') (O), U ( k ,  t ,  t ' ) / U ( k ,  t', t') (a) and U ( k ,  t ,  t ' )  [ U ( k ,  t ,  t )  
x U ( k ,  t', t ')$ (0) at t' = 2 for k = 4.5 (a), and k = 22.5 ( b ) .  ( c )  shows T,(k, 2) (--) 
and T,(k,  2) (- - -) (ordinate units arbitrary). (d )  and ( e )  similarly depict G*(k, t ,  t ' ) ,  
O ( k ,  t ,  t ' ) /O(k,  t', t ' ) ,  and O(k ,  t ,  t') [ O ( k ,  t ,  t )  O(k ,  t', t ' ) ]* .  

I I I I I I J 
0.2 0.4 0.6 0.8 1 .o 1.2 

FIGURE 5. S, and S,  comparisons for run 2 ( (  13) and (14) for E,(k) ,  
E,(k),  with A ,  and A ,  given by (18) and (19)). 

Run 2 is thus at  somewhat higher R, and PA. We note that, in this case, the TFM 
results are in better agreement a t  large k. However, the calculation does not reach as 
far into the dissipation range as does run 1. There also appears to be evidence of large-k 
truncation effects in all methods, as is especially evident in figure 5 (a) .  
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FIGURE 0. RA and P A  comparisons for run 2. ((13) and (14) give 
initial conditions for E,(k) and E,(k).) 

4. Comparison of present results to low-Reynolds-number data for S, 
Tavoularis, Bennett & Corrsin (1978) have reported wind-tunnel measurements of 

S,(R) down to RA = 1 ,  We compare our results for S, to their assembled measurements 
in figure 8. We note that DIA tends to overestimate S,, as RA+O, while TFM under- 
estimates it. This is in rough agreement with our observations of $3. Both theoretical 
calculations have some hystereses; S, depends to a certain extent (about 5 yo) on not 
only the current R,, but also on the value of R,(t = 0) .  There may be residuals of the 
initial Gaussian state which longer run times may eliminate. At larger RA ( >  20), 
TFM is in reasonable agreement with experiment; we do not, however, see in the TFM 
theoretical results the apparent dip in the data near RA = 100. The DIA begins to 
underestimate S, significantly for R,, 2 50, beyond which the Galilean non-invariance - 
the most significant qualitative error of this theory - begins to cause detectable errors 
in the spectrum. We do not know of equivalent observational summaries of the 
@-data. 

Our DNS results for SJR,,) should also be compared to the recent numerical simu- 
lations of Schirani & Ferziger (1982), who report an X,(R,) curve having a maximum 
at RA 2: 10. This is contrary to our results, which indicate a monotonically increasing 
S, us. R,, curve. Their results were obtained with a 163 grid. For R,, > 20 they used an 
eddy viscosity. There is no reason that with an eddy viscosity these small scales would 
give the correct skewness. Siggia (1981) has produced results consistent with ours 
with a 643 grid and R,, = 45. 
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k k 

FIGURE 7 (a). For caption see opposite page. 

(a ) 

The TFM results presented here for large Rh have been gleaned from other calcu- 
lations (Herring & Kraichnan 1972; Larcheveque et al. 1980; Herring et at. 1981). We 
note that S, has not reached its R,-+oo asymptote even at  Rh = 1000. This would 
appear to be frustrating to efforts to ascribe to the increase of S, with RA a strong 
non-Gaussianity, as has been done, for example, by Van Atha (1974). 

It should be noted that our theoretical calculations (DNS, DIA and TFM) are for 
E,(k) 21 k4 as k+O, which is not necessarily the experimental shape (Tavoularis et al. 
(1978), in fact, make a strong case for k2). However, previous numerical experience 
using DIA-TFM calculations suggests that S,(RA) is not strongly dependent on this 
spectral region. 

5. Concluding comments 
The comparison of DIA and TFM closures to the DNS presented here indicates that 

both procedures are in good agreement in the energy-containing range. Our comments 
apply only to RA and PA 5 30, a limitation imposed by machine considerations in 
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k k 

( b )  

FIGURE 7. Comparison of E,(k)  and E,(k) for run 2. 
See caption to figure 3 for further details. 

I I  I I  I 1  I I  I 
0.1 1 10 100 1000 10000 

R ,  
FIGURE 8. Comparison of low-RA So(RA) data of Tavoularis et al. (1978) with DNS ( @), 

TFM, DIA (solid lines, with TFM > DIA at large RA).  
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treating the DNS. At quite small R,,, or perhaps equivalently in the far-dissipation 
range, the TFM does have significant errors (as may be noted from figure 3) attribut- 
able to its use of a Markovianization, in connection with the use of the fluctuation 
dissipation equation (9). Otherwise, the agreement with DNS is encouraging in view 
of the shaky comparisons made earlier to the experimental data, as reported, for 
example, by Newman & Herring (1979). It suggests that the data may be affected by 
anisotropy even a t  small scales, a condition which the DNS avoids. At larger R,, the 
TFM’s overall accuracy seems to improve, suggesting that its Markovianization errors 
are buried deeper in the dissipation range, where they go unnoticed. 

It is somewhat surprising that our calculations have uncovered a significant dis- 
crepancy in the TFM at  such small R,, and PA. Naively, one would have thought that all 
reasonable perturbation procedures would converge as (R,,, PA) + 0. Of course, what 
we see here as R,, -+ 0 is a qualitative failure of the TFM: the assumption that the flow 
is turbulently active (in the sense of (9)) becomes untenable and must be replaced by 
an assumption of near-laminar flow - especially a t  small scales. As noted in $3,  no 
sensible adjustment of the scaling parameters g,,, go can restore agreement (for run 1) 
a t  large k since calculations with (g,,, go) = (0,O) virtually superimpose those with 
(gt,,g$) = (1.17,0.5). We have cited the fact that the DIA - in contrast to TFM - 
allows for long coherence times, and we have implied that the improved DIA agree- 
ment with DNS is attributable to this fact. We have not checked here that the DNS 
does in fact have long coherence times a t  small scales. Such a comparison has been 
reported a t  larger R,, (for the velocity field only) by Orszag & Patterson (1972b)) where 
it was noted that the DIA gave satisfactory results a t  moderate k, with increasing 
errors as k increases. I n  any case, the DIA gave the correct qualitative trend. It would 
be of value to have such results a t  lower R,, and PA, where DIA should be more accurate 
a t  all k. 

We have not discussed here the importance of intermittence and non-strong non- 
Gaussianity, especially in the scalar field. This is described in detail elsewhere (Kerr 
1981). Here we only note that such effects are present, even a t  these modest values of 
Rh and P,, in the DNS. For example, the scalar derivative flatness factor for run I is 
approx. 3.8, as compared to the Gaussian value of 3. The importance of such effects 
appears, however, not to preclude agreement of second-order moments closure results 
with the reality of DNS. 

R. M. K. acknowledges support from NSF Grant ENG-7902942. The National 
Center for Atmospheric research is sponsored by the National Science Foundation.‘ 

R E F E R E N C E S  

CORRSIN, S. 1951 The decay of isotropic temperature fluctuations in an isotropic turbulence. 
J .  Atmos. Sci. 18, 417-423. 

FREYMUTH, P. 1978 Characterization of turbulent temperature ramps by two length scales. 
Phys. Fluids 21, 2114. 

FRISCH, U. & MORFF, R. H. 1981 Interinittency in non-linear dynamics and singularities for 
complex times. Phys. Rev. A 23, 2673-2705. 

HERRING, J. R. 1969 The statistical theory of thermal convection a t  large Prandtl number. 
Phys. Fluids 12, 2106-2110. 

HERRING, J. R. 1977 On the statistical theory of two-dimensional topographic turbulence. 
J .  Atmos. Sci. 34, 1731-1750. 



Two-point closures for  isotropic turbulence 219 

HERRING, J. R. & KRAICHNAN, R.  H. 1972 Comparison of some approximations for isotropic 
turbulence. In  Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta), Lecture 
Notes in Physics, vol. 12, pp. 148-194. Springer. 

HERRING, J. R. & KRAICHNAN, R.  H. 1979 A numerical comparison of velocity-based and 
strain-based Lagrangian-history turbulence approximations. J .  Fluid Mech. 91, 581-597. 

HERRING, J. R., SCHERTZER, D., LESIEUR, M., NEWMAN, G. R., CHOLLET, J. P. & LARCHEVEQUE, 
M. 1981 A comparative assessment of spectral closures as applied to passive scalar 
diffusion. Preprint ; Submited to J .  Fluid Mech. 

KERR, R. M. 1981 Theoretical investigation of a passive scalar such as temperature in isotropic 
turbulence. Ph.D. thesis; Cooperative Thesis no. 64, Cornell University and National Center 
for Atmospheric Research. 

KRAICHNAN, R. H. 1958 Irreversible statistical mechanics of incompressible hydrodynamic 
turbulence. Phys. Rev. 109, 1407-1422. 

KRAICHNAN, R. H. 1959 The structure of isotropic turbulence a t  very high Reynolds numbers. 
J .  Fluid hfech. 5, 497-543. 

KRAICHNAN, R. H. 1964 Approximations for steady-state isotropic turbulence. Phys. FEuids 7, 

KRAICHNAN, R. H. 1965 Lagrangian-history closure approximation for turbulence. Phys. 
Fluids 8 ,  575-598; erratum 9, 1884. 

KRAICHNAN, R. H. 1968 Small scale structure convected by turbulence. Phys. Fluids 11, 
945-953. 

KRAICHNAN, R. H. 197 1 An almost-Markovian Galilean-invariant turbulence model. J .  Fluid 
Mech. 47, 513-524. 

KRAICHNAN, R. H. & HERRING, J. R. 1978 A strain-based Lagrangian-history turbulence 
theory. J .  Fluid Mech. 88, 355-367. 

LARCHEVEQUE, M., CHOLLET, J. P., HERRING, J. R., LESIEUR, M., NEWMAN, G. R. & SCHERTZER, 
D. 1980 Two-point closure applied to a passive scalar in decaying isotropic turbulence. 
In Turbulent Shear Flows 2 (ed J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt 
& J. H. Whitelaw), pp. 50-66. Springer. 

LESIEUR, M. & SCHERTZER, D. 1978 Dynamique des gros tourbillons et d6croissance de 1'6nergie 
cinetique en turbulence tridimensionelle isotrope B grand nombre de Reynolds. J .  file'c. 
17, 607-646. 

NEWMAN, G. R. & HERRING, J. R. 1979 A test field model study of a passive scalar in isotropic 
turbulence. J .  Fluid Mech. 94, 163-194. 

ORSZAG, S. A. 1974 Statistical theory of turbulence. In  Fluid Dynamics: 1973 Les Houches 
Summer School on Physics (ed. R. Balian & J. L. Penbe), pp. 235-374. Gordon & Breach. 

ORSZAG, S. A. & PATTERSON, G. S. 1972a Numerical simulation of turbulence. In  Statistical 
Afodels and Turbulence (ed. R. Rosenblatt & C. Van Atta), Lecture Notes in Physics, 
vol. 12, pp. 127-147. Springer. 

ORSZAG, S. A. & PATTERSON, G. S. 19726 Numerical simulation of three-dimensional homo- 
geneous isotropic turbulence. Phys. Rev. Lett. 28, 76-79. 

SCHIRANI, E. & FERZIGER, J. H. 1982 Simulation of low-Reynolds-number isotropic turbulence 
including a passive scalar. Submitted to J .  FZuid Afech. 

SIGGIA, E. D. 1981 Numerical study of small-scale intermittency in three-dimensional turbu- 
lence. J .  Fluid Afech. 107, 375-406. 

TATSUMI, T., KIDA, S. & MIZUSHIMA, J. 1978 The multiple-scale cumulant expansion for iso- 
tropic turbulence. J .  Fluid Mech. 85, 97-142. 

TAVOULARIS, S . ,  BENNETT, J. C. & CORRSIN, S. 1978 Velocity-derivative skewness in nearly 
isotropic turbulence. J .  Fluid Mech. 88, 63-69. 

VAN ATTA, C. W. 1974 Influence of fluctuations in dissipation rates on some statistical pro- 
perties of turbulence scalar fields Izv,,. Atmos. Ocean. Phys. 10, 712-719. 

YEH, T. T. & VAN ATTA, C. W. 1973 Spectral transfer of scalar and velocity fields in heated-grid 
turbulence. J .  Fluid Mech. 58, 233-266. 

1163-1168. 

8 F L M  118 


